[image:]MS Access Reference Library DB considerations

Table of Contents
General Reference Library Considerations	2
Access method of operation when used as a Reference Library	2
Linking the Library to your Application	3
General Code Guidelines for Reference Library usage	3
Calling a form in the Library from the App	3
Calling a form in the App from the Library.	3
Calling a function in the App from the Library	3
Referencing tables, queries in the App from a Library form.	3
Referencing tables in App from Library module code	3
Referencing tables in Library from Library module code	4
Gotchas	4
Suggested Library Code conventions	5
Application code:	5
Library code:	5
Appendix A: Sample Library Form code to refer to Application	6
Appendix B: Sample code to open Library-based forms / reports	7
Appendix C: How to create a Static Class module	8

[bookmark: _Toc49362196]General Reference Library Considerations
[bookmark: _Toc49362197]Access method of operation when used as a Reference Library
When an Access database file is used as a Reference Library (Library) for an Access Project (Application), there are some specific and inconsistent behaviors that must be accommodated in your design and coding. These are different for Modules, Macros, Tables, Queries, Forms and Reports.
VBA code in the Application (in Modules, Forms and Reports) can call any modules in the Library just as if they were contained in the Application. Other objects in the Application cannot refer to other Library objects. (Note: When code in the Application calls a function, the Application name space is searched first. If the function is not found, then the Library name space is searched. If the function cannot be found in either database, an error occurs).
Access follows these rules for objects contained in the Library database:
Modules (VBA code in regular Modules, Class Modules, Forms and Reports)
· Do not “see” Application Modules for regular references.
· Can “call” Application Modules via the “Application.Run” command.
· Domain aggregate functions such as Dlookup, DMin, and Dmax usually refer to the data in the Application database [CurrentDb], NOT the Library database [CodeDb]. The exception being when a query is used as the source rather than a table name. In that case the query will refer to the Library database and you will need to use the “IN externaldatabase” clause to direct it to the Application database if desired.
· Class modules must have attribute VB_Exposed = True set to be referenced by Application Modules.
Macros
· Access will first search the Library database for a macro reference, then the Application database for the macro. If the macro cannot be found in either database, an error occurs.
Tables
· Table references in the Library always refer to Tables in the Library.
· When using DAO in VBA code, use CurrentDB() or DBEngine(0)(0) to refer to Table objects in the Application database, or CodeDB() to refer to objects in the Library database.
Queries
· Query references in the Library always refer to Queries in the Library.
· Queries in the Library always refer to Tables in the Library. They may use the “IN externalatabase” clause to refer to Tables in the Application (i.e. it is a foreign database file to the Library)
Forms
· Form references in the Library refer first to objects in the Library, and if not found there the Application is searched. If the form cannot be found in either database, an error occurs.
· Forms, Reports and Bound controls, are bound to record sources (tables and queries) in the Library database, i.e. CodeDB(). Access always searches the Library database when trying to resolve a record-source reference. If the record source cannot be found, an error occurs.
The simplest solution is to use a Query with the “IN externaldatabase” clause referring to the application database for the [Record Source] or [Row Source] in these situations. Using VBA code to set these by referring to CurrentDB.Name (the full pathname to the database file) works well.
You may also use unbound controls and/or use DAO code to connect to a [Record Set] in the application database at runtime.
[bookmark: _Toc49362198]Linking the Library to your Application
In your Application, do a control-G or otherwise initiate the VBA Editor.
Using the Tools menu, select the References dialog. If “RDF_Library” is not already present, then press the browse button and navigate to the folder containing the Library. Select the file type on the drop down so that you see the Library file name displayed. Select the Library file and press the Open button.
Notice that the Library contents is now displayed in the Project Explorer window.
If you have placed the Library file in the same folder as your Application project then, once connected, Access will always find the Library file, even when you move the pair of files to another directory folder.
[bookmark: _Toc49362199]General Code Guidelines for Reference Library usage
[bookmark: _Toc49362200]Calling a form in the Library from the App
Call a function in the Library to open the form.
[bookmark: _Toc49362201]Calling a form in the App from the Library.
Execute a regular DoCmd.OpenForm (Or, for consistency, always call the same Library routine as for the previous case).
[bookmark: _Toc49362202]Calling a function in the App from the Library
To call an App function from the Library use Application.Run. Note that it does provide return values but these are typed as a variant. So be aware of this and make variable assignments accordingly.
[bookmark: _Toc49362203]Referencing tables, queries in the App from a Library form.
You have two options. Option 2 is the best all around solution in my opinion.
1. Set the [Record Set] property of the form and any necessary controls (combo boxes, etc.) to Recordset objects that you create in the Open Event. This is simple but DOES NOT allow you to use the ReQuery method or do any filtering by using the form properties.
2. The [Record Source] property can be set from a query which includes the “IN C:\MyDirectory\MyApp.accdb” clause. The control [Row Source] property can also be set from such a query. You can build such Queries as a character string variable in VBA code. You may want to store such queries as Constants or values in a table. This DOES allow you to use the ReQuery method or do any filtering by using the form properties.
[bookmark: _Toc49362204]Referencing tables in App from Library module code
Example:
strSQL = “whatever SQL you need here”
set AppDB = CurrentDb
AppDB.Execute (strSQL, dbFailOnError)

[bookmark: _Toc49362205]Referencing tables in Library from Library module code
Example:
strSQL = “whatever SQL you need here”
set LibDB = CodeDb
LibDB.Execute (strSQL, dbFailOnError)
[bookmark: _Toc49362206]Gotchas
Make sure the Library is paired and shipped with the Application as new versions are released.
Figure out a naming convention for modules, macros, tables, forms, reports, etc. so that it will be unlikely to have conflicts between Library objects and Application objects. You may wish to use Static Class modules as a way to further insulate against possible name conflicts.
When you are testing and debugging, you will be able to see Library VBA code in the IDE (aka, VBA Editor). You can make changes in Library code there in order to test, but those changes will NOT be saved back into the library. Therefore, you need to develop a workflow to capture such changes as you go, such as opening a separate copy of the Library in parallel or a text editor such as Notepad++ so that you can copy and paste changes for deployment into the Library.
[bookmark: _Toc49362207]Suggested Library Code conventions
Library VBA code can be called by any code in the Project but the Library code cannot call out to the Project code directly. I.E. All the Library code is visible to the Project code but the Project code is not visible to the Library.
[bookmark: _Toc49362208]Application code:
· To open a form use a custom library function, such as MyOpenForm(), so that the Library will be searched first for the form and then the Project.
[bookmark: _Toc49362209]Library code:
· To call a module in the Project use Application.Run. Note that this will provide a return value, but it will always be typed as a Variant.
· When referencing a table from form code, use CurrentDB or DBEngine(0)(0) to refer to tables in the application database. Within form or module code, CodeDB references the Library database.
· Stored queries are problematic, so the best solution is to build queries in VBA and execute them against the correct database. For static queries used by multiple objects, these could be defined as public constants in a library module.
· Form and Control record sources that reference the application DB are specified in one of two ways (see Appendix A for examples):
[bookmark: _Toc49362210]Appendix A: Sample Library Form code to refer to Application
When you have a form or report in the Library it will automatically refer to tables and queries that are also in the Library. In order to refer to tables in the App from forms in the Library, use code like the following.
Example 1:
This works best for simple forms where you do not need filtering or use of the ReQuery method. With this example you cannot manipulate the form RecordSource property or any related properties such as Filter, Order By, etc.
Option Compare Database
Option Explicit
Dim curDB As DAO.Database
Dim formRS As DAO.Recordset

Private Sub Form_Open(Cancel As Integer)
 Dim strSQL As String
 Set curDB = CurrentDb
 strSQL = "SELECT * FROM tblMyAppData;"
 Set formRS = curDB.OpenRecordset(strSQL, dbOpenDynaset, dbFailOnError)
 Set Me.Recordset = formRS
End Sub

Private Sub Form_Close()
 Set formRS = Nothing
 Set curDB = Nothing
End Sub
Example 2:
This is best for more complex forms where you need to ReQuery and manipulate filters, etc.
Option Compare Database
Option Explicit
Dim curDB As DAO.Database
Dim curDBpath As String

Private Sub Form_Open(Cancel As Integer)
 Dim strSQL As String
 Set curDB = CurrentDb
 curDBpath = curDB.Name
 strSQL = "SELECT * FROM tblMyAppData IN """ & curDBpath & """;"
 Me.RecordSource = strSQL
End Sub

Private Sub Form_Close()
 Set curDB = Nothing
End Sub

You can use the same methods for Controls by setting either MyControl.Recordset or MyControl.RowSource.

[bookmark: _Toc49362211]Appendix B: Sample code to open Library-based forms / reports
Here are two functions that can be used in the Library to open a form or report that is either in the Library or the Application.
Public Function MyOpenForm(FormName As String, _
 Optional View As AcFormView = acNormal, _
 Optional FilterName As String, _
 Optional WhereCondition As String, _
 Optional DataMode As AcFormOpenDataMode = acFormPropertySettings, _
 Optional WindowMode As AcWindowMode = acWindowNormal, _
 Optional OpenArgs As String)
 DoCmd.OpenForm FormName, View, FilterName, WhereCondition, DataMode,_
 WindowMode, OpenArgs
End Function

Public Function MyOpenReport(ReportName As String, _
 Optional View As AcView = acViewNormal, _
 Optional FilterName As String, _
 Optional WhereCondition As String, _
 Optional WindowMode As AcWindowMode = acWindowNormal, _
 Optional OpenArgs As String)
 DoCmd.OpenReport ReportName, View, FilterName, WhereCondition, WindowMode, OpenArgs
End Function

	
[bookmark: _Toc49362212]Appendix C: How to create a Static Class module
In order to create an Access VBA Class module that is Static you need to create a regular class module and then manually modify two of the module settings.
1. Create your new class module in the VBA editor and then Export it to a file
2. Open the Exported file, modify these settings and save the file:
a. Change [Attribute VB_PredeclaredId = False] to True
b. Change [Attribute VB_Exposed = False] to True
3. Do a file Import of the modified file and you will now have a Static Class module.
The benefits of a Static Class module are that you will not need to instantiate it. An instance of it will be created when Access starts up and you can refer to it by name.
The Methods (Functions) and Properties of such a module are not in the Public name space of the Application or the Library. Your code must refer to the module name in order to reference the components within. This helps to avoid naming conflicts between your Application and Library functions. Your code would refer to such functions as “MyClassMod.MyFunction1”, etc.
HCI ©2020, All Rights Reserved	1 of 1	October 9, 2022
image1.png
HALDER

CONSULTING
INCORPORATED

